2014

CSCI 335-01 Database Systems

Michael Goldweber

Follow this and additional works at: http://www.exhibit.xavier.edu/computer_science_syllabi_spring_2014

Recommended Citation
http://www.exhibit.xavier.edu/computer_science_syllabi_spring_2014/2

This Restricted-Access Syllabus is brought to you for free and open access by the Computer Science Syllabi 2014 at Exhibit. It has been accepted for inclusion in Computer Science Syllabi Spring 2014 by an authorized administrator of Exhibit. For more information, please contact exhibit@xavier.edu.
Database Systems
CSCI-335-01

Instructor: Michael Goldweber
Office: 134 Hinkle, 745-3936
email: mikeyg@cs.xu.edu
home page: http://www.cs.xu.edu/~mikeyg
Office hours/Personal Schedule: http://www.cs.xu.edu/~mikeyg/schedule14s.html
Course Home Page: http://www.cs.xu.edu/csci335/14s

Schedule: Lectures are Tuesdays and Thursdays 2:30-3:45 p.m. in Logan 105.

Required Text: Kifer, Bernstein, and Lewis, Database Systems: An Application-Oriented Approach
Introductory Version, 2/e, Addison-Wesley, 2005.
Additional readings as assigned.

Other texts of interest: The following are some excellent texts that were used in previous instantiations of the course


Prerequisites: Machine Organization (CSCI 210), Data Structures and Algorithms (CSCI 220), and Foundations of Higher Mathematics (MATH 225). Languages and Automata (CSCI 250) could prove helpful.

Course Objectives: To gain a clear understanding of the concepts underlying database systems. Database systems are the software systems used to manage large volumes of data. The principals of database systems, hardware characteristics, file organization and evaluation, data models, database schemas, etc., are studied from both a theoretical and practical viewpoint. The emphasis will be on solving the problems encountered in designing and using a database system, regardless of the underlying hardware and operating system on which the database system will run.

Required Work: In addition to regular attendance of the lectures and staying current with the assigned reading there will be a mix of both paper & pencil style homework assignments (theoretical concepts), database programming assignments and papers. There is also a project associated with this course: working in groups, each team will create a database for a "client" application.
All assignments will be due at the beginning of class time on the announced due date, AND WILL BE COLLECTED AT THE BEGINNING OF CLASS. No late work will be accepted. It is recommended that you submit your best work on time than to give an answer to all the problems. If you cannot solve a problem you should indicate as such and also provide some statement of what your ideas were, where you got stuck, and where you were hoping to take your ideas to.

Exams: There will be one in-class midsemester exam, tentatively scheduled for Thursday February 27. The cumulative final exam is scheduled for Tuesday May 6, 2014, 10:00-2:50. Use these dates to make your travel plans accordingly.

Attendance and Classroom Participation: While there is no formal attendance policy, you are expected to arrive prepared to ALL course sessions. Furthermore you are expected to participate in the classroom discussions and activities to the best of your abilities. Given the difficult nature of the material and the interactive lecturing approach that will be used, it is difficult to envision a student missing and/or arriving unprepared to a number of the class sessions and still succeed in the course.

Grading: Grades on all assigned work and exams will be based on correctness, clarity and style. Your grade will be based on the following

- Database implementation project: 10%
• Homework, and special assignments will contribute 55%.
• The midterm examinations will contribute 15%.
• Cumulative final examination will contribute 20%.

The Department of Computer Science and Mathematics has adopted the following grading standards:

A: Exceptional. The student's attainments are out of the normal course, unusual and special.
B: Good. The student's performance is done rightfully or skillfully and is commendable.
C: Satisfactory. The student's accomplishments are sufficient for the needs of the course.
D: Minimal passing.
F: Failure.

A more detailed explanation can be found at: http://www.cs.xu.edu/~mikeyg/gradingStandards.html.
Also see http://www.cs.xu.edu/~mikeyg/CourseEngagementStandards.html for a description of the "Course Engagement Standards."

Exceptions to the Rules: Almost all rules are designed to be broken under the correct set of extraordinary circumstances. It is strongly recommended that you communicate to the instructor at the earliest possible time any circumstances you feel warrant an exception (e.g. illness, religious holiday, personal and/or family crisis, etc.). Remember that going into hiding is probably the worst strategy you can adopt! There is a direct relationship between the amount of sympathy you can anticipate from an instructor and the amount of time remaining until a given assignment's due-date. Finally, remember that if you are uncomfortable discussing something directly with an instructor (e.g. personal problems) you can always contact someone in the Dean of Students Office and have that individual contact the instructor.

Honor Code: Homework can be challenging - it's where you find out what confuses you. You are strongly encouraged to discuss the homework with your classmates or with the instructor (and where appropriate, the math tutoring lab). In the end though, all work submitted must be your own. You must work out, write up, create, or program your own solutions. Work you hand in must be conceived, created, and fully understood by you.

The best way to ensure this is to craft your solutions/answers/programs when you are by yourself rather than during your discussions with others. This will insure that your work is based on your own understanding rather than on that of your classmates. To do otherwise is a violation of the college's policy on academic honesty and will be handled accordingly. Please refer to the rules described in the Student Handbook.

I encourage you to follow these two guidelines, stated on many course websites, but perhaps originating most recently at Duke University.

• The Gilligan's Island Rule: Essentially, the idea is that when you meet to discuss problems, it is fine to have a communal board or paper to work out your ideas, but this record should be destroyed at the end of the session. Then, everyone should spend at least thirty minutes doing a relatively mindless task (like watching reruns of a brainless show - e.g. Gilligan's Island). This rule helps everyone be sure that the work they create truly represents their understanding of the material.
• List of Collaborators: If you discussed the problems with others, include their names in your writeup, either at the beginning or end of the problem, or in a section specifically designated as the list of collaborators. (If you have the same collaborators on all problems, a single listing is fine. If it varies by problem, list on a problem-by-problem basis.)

Remember, un-noted collaboration or any form of cheating will be dealt with harshly to protect the integrity of everyone involved.
Always remember:

Don't Panic