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Abstract

Support Vector Machines(SVMs) are a unique tool for classification of
data and are used for solving real world problems such as image classifica-
tion and text analysis. This project explores the underlying mathematics
optimization problem behind the algorithm in a Support Vector Machine.
The original minimization problem is described and an equivalent maxi-
mization formulation is derived. Various two and three dimensional exam-
ples are given to illustrate how the optimization gives a useable result with
both linearly and nonlinearly separable data. Finally, this tool is applied
in a handwriting character recognition problem. Popular SVM kernels are
explored and their respective accuracy percentages in identifying between
characters are compared.

1 Introduction

My motivation to learn about Support Vector Machines stemmed from my REU
over the summer. We used SVMs to classify Implicit Association Test takers as
cheaters or non-cheaters. Implicit Association Tests are utilized to determine if
a person has a bias by measuring reaction times when classifying objects (terms
or pictures). A person is able to cheat the test by slowing down their reaction
times if they are aware of how bias is measured. A problem exists with simply
looking at reaction times and classifying the slow times as cheaters. People with
naturally slower reaction times or those who may become distracted during the
test may be incorrectly classified as cheaters. The SVM is useful in this type
of classification because it is able to determine a connection between cheaters
that a human eye may not see. It is also helpful with Implicit Association Tests
because the test taker is asked to classify up to 200 objects and can analyze
the times much quicker. For this project, I explore the underlying optimization
method and study examples in 2 and 3 dimensions of small data sets. I also
focus on a different application for SVMs: handwriting and letter recognition.
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2 Background - What is a SVM?

Support Vector Machines are a machine learning tool utlilized for data classifica-
tion and regression. The implementation of a Support Vector Machine requires
two sets of data: training and testing. The training data is classified into the
correct categories by the user. From this data, a model is produced through an
optimization problem. This model creates a hyperplane which linearly separates
the testing data set into the correct classifications.

3 Example in 2D with 20 data points

Support Vector Machines are usually applied to large data sets in high dimen-
sions that are hard, or impossible, to separate by hand. In order to understand
how a SVM works, it is helpful to look at an example that can be solved rela-
tively easily. In this example there are 20 data points:
x1 = (4, 3), y1 = 1
x2 = (3, 0), y2 = 1
x3 = (4, 0), y3 = 1
x4 = (2,−1), y4 = 1
x5 = (3,−2), y5 = 1
x6 = (2,−3), y6 = 1
x7 = (1,−4), y7 = 1
x8 = (0,−5), y8 = 1
x9 = (2,−5), y9 = 1
x10 = (5,−3), y10 = 1

x11 = (−3, 3), y11 = −1
x12 = (0, 3), y12 = −1
x13 = (0, 1), y13 = −1
x14 = (1, 2), y14 = −1
x15 = (2, 3), y15 = −1
x16 = (−1, 1), y16 = −1
x17 = (2, 5), y17 = −1
x18 = (−2,−1), y18 = −1
x19 = (−1,−2), y19 = −1
x20 = (1,−1), y20 = −1

The xi variables denote the data point and the yi variables denote which cate-
gory each point is classified as. It is common practice to use 1 and -1 to denote
the two different categories. In a problem existing in the nth dimension, the
xi variables will be vectors of length n while the yi variables will always be 1
or -1. Each entry in the xi vector will be assigned information. For example,
say we would like to separate data points that represent people that make over
$75,000 a year and those that make less than $75,000 a year. The yi would be
1 for those who make over $75,000 and -1 would represent those who make less
than $75,000. Each entry in the xi vector would represent different information
like age, gender, career, location, etc.

In order to separate the data points, a hyperplane is used (discussed in the
next section). The data in this example can be separated using the line:

2x− y − 4 = 0

as seen in Figure 1 where the yi = 1 are in red and yi = -1 are in blue.
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Figure 1: Example in 2D with 20 points

4 Hyperplane

The equation for the hyperplane created by the SVM is based on a training
data set. The training data set is composed of labeled vectors that are of the
form (xi, yi) such that xi is the ith vector in the data set and yi is the label as-
sociated with xi. The label yi indicates which category the ith vector belongs in.

The equation of a hyperplane comes from a linear discriminant function

f(x) = wTx + b (1)

where b is the bias term and w is the weight vector. When f(x) = 0 we
call this the seperating hyperplane because it divides the space into two classes
dependent upon the sign of the discriminant function. In two dimensions, w =<
w1, w2 > and x =< x, y > will result in a line, f(x) = w1x+ w2y + b.
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Consider the example in Section 3, w =< 2,−1 >,x =< x, y >, and b = −4.

wTx + b = 0 =⇒ 2x− y − 4 = 0

This line is the separating hyperplane for this data set. Consider the vectors
x1 =< 4, 3 > and x11 =< −3, 3 > from this example. Evaluating the discrimi-
nant function with each results in:

f(x1) = f(< 4, 3 >) =< 2,−1 >T< 4, 3 > −4 = 1

f(x2) = f(< −3, 3 >) =< 2,−1 >T< −3, 3 > −4 = −1

The different signs of f(x1) and f(x11) indicate that x1 and x11 belong to two
different class, which is true since f(x1) has the label y1 = 1 and f(x11) has
the label y11 = −1.

5 What is the Optimal Hyperplane?

The goal of a SVM is to create a model that produces a hyperplane which will
linearly separate a data set into specific categories. However, there are many
different hyperplanes that could achieve this goal for any given data set. Figure
2 below illustrates this point for the example described above. The question
emerges: which hyperplane is optimal?

5.1 Margin

The margin of a hyperplane [1] is defined as

mD(w) =
1

2
ŵT (x+ − x−) (2)

where ŵ is the unit vector of the weight vector, w, and x+,x−, the support
vectors, are the points closest to the hyperplane.

From the definition of the hyperplane,

f(x+) = wTx+ + b

f(x−) = wTx− + b.

Assume that x+,x− are equidistant from the hyperplane, such that f(x+) = a
and f(x−) = −a for some postive, constant a. [1]

Set a = 1 by manipulating the data points by a fixed number until this is
true (Note: this doesn’t really change the margin, just the units). Subtracting
f(x+) and f(x−) leads to the equation:

wT (x+ − x−) = 2a
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Figure 2: Many Possible Separating Hyperplanes

but a = 1 so,
wT (x+ − x−) = 2

Dividing this equation by ||w|| results in:(
w

||w||

)T
(x+ − x−) =

2

||w||
.

By the definition of unit vector and dividing by 2, this simplifies to:

1

2
ŵT (x+ − x−) =

1

||w||
. (3)

From the definition of margin (2) and (3) ,

mD(w) =
1

||w||
. (4)

Figure 3 below illustrates the margin of the separating hyperplane in the exam-
ple described in Section 3. The circled points indicate the support vectors.
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Figure 3: Margin and Support Vectors

5.2 Why do we care about the margin?

The goal of a SVM is to create a model that produces a hyperplane which will
linearly separate data into specific categories. An ideal hyperplane would not
only separate the training set of vectors but would correctly classify other data
sets. The optimal hyperplane will have a maximized margin. If the distance
between the closest vector and the hyperplane is large there is a smaller chance
that a vector will be incorrectly classified.

Maximizing equation (4) is equivalent to the optimization problem:

minimize
w,b

1

2
||w||2

subject to yi(w
Txi + b) ≥ 1.

(5)

The contraints force every vector to be classified into the correct category (in-
dicated by yi’s). Using the definition of the discriminant function (1), we could
re-write the constraints to be

yif(x) ≥ 1.
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The constraints requires the label of the vectors and evaluation of the discrim-
inant function to have the same sign. Consider the hyperplane example in
Section 4 where f(x) =< 2,−1 >T x − 4. Suppose the vector x1 =< 4, 3 >
has label y1 = −1 and is incorrectly classified. Evaluating the discriminant
fuction results in f(x) = f(< 4, 3 >) = 1. This violates the constraints since
yif(x) = −1 � 1. Thus incorrectly classifying vectors is impossible with the
given constraints.

5.3 Soft-Margin SVM

The requirement of correct classification for every training vector in the opti-
mization problem descibed above defines it as a Hard-Margin SVM. The goal
of a SVM is to create a model that will linearly separate data sets into correct
classifications. The model is created from the training vectors but a good model
could be used on other similar data sets. For example, earlier we described a
problem where we wanted to classify a person based on if they earning more or
less than $75,000. We would input a data set where each person was classified as
earning more or less than $75,000 and the SVM would output a model of a hy-
perplane to separate them. We already know if each person from the input data
set made more or less than $75,000 so it wouldn’t make sense to use this model
to classify one of them. The model is actually useful for people that we have no
idea how much they make. In this case, we don’t really care if all of the training
vectors are classified as correct, just enough to make the model accurate enough.

The more commonly used Support Vector Machine, called a Soft-Margin SVM,
allows for error in the classification of the training data. It is defined as follows:

minimize
w,b

1

2
||w||2 + C

∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi.

where ξi’s are slack variables that allow an example to be in the margin(1 ≥
ξi ≥ 0) or misclassified (ξi ≥ 1) and the constant C sets the relative importance
of maximizing the margin and minimizing the amount of slack.

The Soft-Margin SVM requires a balance between not misclassifying too many
training vectors and maximizing the margin. The constant C which controls
this balance, is one of the user inputs the SVM requires.

6 Kernels

So far we have been looking at data sets that are linearly separable. However,
most data sets are not linearly separable in their given form. How does the
SVM handle this?
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6.1 Kernel Example

Consider the data points:
x1 = (0, 0), y1 = 1
x2 = (2, 2), y2 = 1
x3 = (2,−4), y3 = 1
x4 = (−4,−2), y4 = 1
x5 = (−2, 3), y5 = 1

x6 = (6, 1), y6 = −1
x7 = (5, 7), y7 = −1
x8 = (−6, 6), y8 = −1
x9 = (−7,−6), y9 = −1
x10 = (−3,−6), y10 = −1

Performing the same optimization process we used for the example in Section 3
will result in a linearly separating hyperplane, a line in this case. As shown in
Figure 4, these data points are separated by a circle and a line would incorrecly
classify many points.

Figure 4: Kernel Example

A solution to this problem emerges if we map these 2-dimensional data points
into 3 dimensions. Consider the function

φ : R2 7→ R3

φ(x1, x2) = (x21, x
2
2,
√

2x1x2)

Applying this mapping to the previous data points results in:
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x′1 = φ(0, 0) = (0, 0, 0)
x′2 = φ(2, 2) = (4, 4, 4

√
2)

x′3 = φ(2,−4) = (4, 9,−6
√

2)
x′4 = φ(−4,−2) = (4, 16,−8

√
2)

x′5 = φ(−2, 3) = (16, 4, 8
√

2)

x′6 = φ(6, 1) = (9, 36, 18
√

2)
x′7 = φ(5, 7) = (25, 49, 35

√
2)

x′8 = φ(−6, 6) = (36, 1, 6
√

2)
x′9 = φ(−7,−6) = (36, 36,−36

√
2)

x′10 = φ(−3,−6) = (49, 36, 42
√

2)

Note: The labels, yis, do not change.
The figure below illustrates the points and the hyperplane that separates them.

Figure 5: Projected Points in 3D

6.2 Dual Formulation

For the optimization problem in (5) the Lagrangian is defined as [2]:

L(w, b, α) =
1

2
||w||2 −

m∑
i=1

αi(yi(x
T
i w + b)− 1) (6)
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where the αis are the Lagrange multipliers.

The general form of the optimization problem can be defined as:

minimize
x

f(x)

subject to ci(x) ≥ 0 for all i ∈ [n].
(7)

Theorem 1 (Karush-Kuhn-Tucker (KKT) for Differentiable Convex Problems).
A solution to the optimization problem (7) with convex, differentiable f, ci is
given by x̄, if there exists some ᾱ ∈ Rn with αi ≥ 0 for all i ∈ [n] such that the
following conditions are satisfied:

∂xL(x̄, ᾱ) = ∂xf(x̄) +

n∑
i=1

ᾱi∂xci(x̄) = 0 (Saddle Point in x̄) (8)

∂αiL(x̄, ᾱ) = ci(x̄) ≤ 0 (Saddle Point in ᾱ) (9)
n∑
i=1

ᾱici(x̄) = 0 (Vanishing KKT-Gap). (10)

From Theorem 1, the Lagrangian (6) must be maximized with respect to αi
and minimized with respect to w and b. In other words, from (8)

∂

∂b
L(w, b, α) = 0,

∂

∂w
L(w, b, α) = 0.

Taking the partial of the Lagrangian with respect to b leads to:

∂

∂b
L(w, b,α) =

∂

∂b

(
1

2
||w||2 −

n∑
i=1

(αiyix
T
i w + αiyib− αi)

)
=

n∑
i=1

αiyi

Similarly, taking the partial of the Lagrangian with respect to w leads to:

∂

∂w
L(w, b,α) =

∂

∂w

(
1

2
||w||2 −

n∑
i=1

(αiyix
T
i w + αiyib− αi)

)
= w−

n∑
i=1

αiyixi

Setting both to 0 results in:
n∑
i=1

αiyi = 0 (11)

w =

n∑
i=1

αiyixi (12)

Finally, substituting (11) and (12) into the Lagrangian and taking into account
we still need to maximize with respect to α, we arrive at the dual form of the
optimization problem:
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maximize
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

subject to

n∑
i=1

yiαi = 0, 0 ≤ αi ≤ C.

6.3 What is a kernel?

In the example in Section 6.1, each vector in R2 was explicitly mapped to its
corresponding vector R3. This is not an issue in problems with smaller data
sets like this example. However, when using extremely large data sets in high
dimensions this is unrealistic in terms of both memory and computation time.

Kernels provide a way around this problem by providing a way to calculate
the dot product of two vectors without explicitly mapping them to a specific
higher dimension. Consider the dual formulation of the optimization problem.
We only care about the dot product of the the training vectors, xi and xj, not
their respective mappings.

A kernel is a fuction K, such that for all x, z ε X

K(x, z) = φ(x)
T
φ(z)

where φ is a mapping from X to an (inner product) feature space F.

In the example in Section 6.1, we define the kernel asK(x1,x2) = φ(x1)
T
φ(x2) =

(x1
Tx2)2. So instead of mapping every training vector to R3, we only have to

square the dot product in R2.

6.4 Popular Kernels

Exploring and discovering new kernels is an area of research on its own. There
are four popular kernels that are used.

• Linear:
K(xi,xj) = xi

Txj

• Polynomial:
K(xi,xj) = (γxi

Txj + r)d, γ > 0

• Radial Basis Function :

K(xi,xj) = exp(−γ||xi − xj||2), γ > 0

• Sigmoid:
K(xi,xj) = tanh(γxi

Txj + r)

The d, γ, r variables are all parameters the user inputs into the SVM. These
variables are chosen based on the characteristics of the input data sets.
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7 LIBSVM

LIBSVM is one of the popular Support Vector Machine tools. It was developed
by Chih-Chung Chang and Chih-Jen Lin at the National Taiwan University.
LIBSVM supports vector classification, vector regression, and one-class SVM.
For this research, the vector classification component was utilized. Each of the
four kernels described in Section 6.4 are implemented by LIBSVM as well as an
option to input a user calculated kernel function.

7.1 Input and Output

LIBSVM requires user input of training and testing data sets. Each data set
must be in its own .txt file where each line in the file represents one vector as
follows: < label >< index1 >:< value1 >< index2 >:< value2 > .... Each
label is the yi associated with the vector while each value is the ith component
of the vector. Any value of the vector that is 0 is not included in the .txt file.

After training the SVM, a model of the separating hyperplane is generated.
This model output and the input of the testing vectors results in an output of
an accuracy percentage, the number of support vector machines, the number
of iterations of the SMO algorithm and other output particular to the SMO
algorithm.

7.2 Sequential Minimal Optimization Algorithm

LIBSVM implements the SMO Algorithm in order to solve the dual optimiza-
tion problem. The SMO algorithm was designed in order to solve the quadratic
programming problem. This problem is characterized by an optimization of a
quadratic function with multiple inputs that is constrained by linear restrictions.
The dual optimization problem falls into the quadratic programming problem.

The SMO algorithm is iterative nature, focusing on the linear constraints, specif-
ically the Lagrange multipliers. The main idea is that two Lagrange multipliers,
αi and αj , are picked. Then the dual formulation is optimized with respect to
αi and αj while the other Lagrange multipliers are held constant. This process
is repeated until all the KKT conditions are satisfied.

8 Handwriting Recognition

8.1 Image to LIBSVM Format

Since LIBSVM takes .txt files as inputs, image files must be manipulated into
.txt files. Each image utilized in this project was a 100x100 pixels. In order
to represent each as a .txt file, each image was first transformed into a bitmap.
This results in 10,000 bits for each image and a vector that has length 10,000.
In order to decrease the dimension, the entry of each vector represents 8 bits
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i.e. a number between 0 to 255. Thus each vector in the training and testing
data sets have 1,250 entries.

In order to remove bias when determining which letters would be included into
the training and testing data sets, I wrote a program to randomly choose an
equal number of A’s and B’s for each data set. This program, as well as the one
to transform the images to .txt files, was written in Python.

8.2 Results

When actually running LIBSVM, I used a total of six different data sets. The
first and second data sets had 92 and 200 images respectively. This included
lowercase and uppercase A’s and B’s that had a white or black background and
were both cursive and print. The third and fourth data sets had 50 images each
of lowercase and uppercase A’s and B’s with white and black background. The
fifth data sets had 50 images of A’s with white backgrounds and 50 images of
B’s with white backgrounds. The final data set had 25 images each of uppercase
A’s and B’s with white backgrounds. Each of these data sets was run with the
four different kernels supported by LIBSVM. The parameters for each kernel
were determined by a cross validation tool supported by LIBSVM.
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Figure 6: LIBSVM Results
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